CHEM 702: Lecture 6

 Radioactive Decay KineticsOutline

- Readings: Modern Nuclear Chemistry Chapter 3; Nuclear and Radiochemistry Chapters 4 and 5
- Radioactive decay kinetics
- Basic decay equations
- Utilization of equations
\rightarrow Mixtures
\rightarrow Equilibrium
\rightarrow Branching
$\rightarrow \quad$ Cross section
- Natural radiation
- Dating

Introduction to Radioactive Decay

- Number of radioactive nuclei that decay in radioactive sample decreases with time
- Exponential decrease
- Independent of P, T, mass action and $1^{\text {st }}$ order
\rightarrow Conditions associated with chemical kinetics
* Electron capture and internal conversion can be affected by conditions
- Specific for isotope and irreversible
- Decay of given radionuclide is random
- Decay rate proportional to amount of parent isotope
- rate of decay=decay constant*\# radioactive nuclei

$$
\text { * } \mathbf{A}=\lambda \mathbf{N}
$$

- Decay constant is average decay probability per nucleus for a unit time
- Represented by λ

$$
\lambda=\frac{\ln 2}{t_{1 / 2}}
$$

Basic decay equations

- Probability of disintegration for a given radioactive atom in a specific time interval is independent past history and present circumstances
- Probability of disintegration depends only on length of time interval
- Probability of decay: $p=\lambda \Delta t$
- Probability of not decaying: 1-p=1- $\lambda \Delta t$
- $\quad(1-\lambda \Delta t)^{\mathrm{n}}=$ probability that atom will survive n intervals of $\Delta \mathrm{t}$
- $n \Delta t=t$, therefore $(1-\lambda \Delta t)^{n}=(1-\lambda t / n)^{n}$
- $\lim _{\mathrm{n} \rightarrow \infty}(1+\mathrm{x} / \mathrm{n})^{\mathrm{n}}=\mathrm{e}^{\mathrm{x}},(1-\lambda t / \mathrm{n})^{\mathrm{n}}=\mathrm{e}^{-\lambda t}$ is limiting value
- Considering $\mathbf{N}_{\mathbf{0}}$ initial atoms
- fraction remaining unchanged after time t is

$$
\rightarrow \mathbf{N} / \mathbf{N}_{\mathbf{0}}=\mathbf{e}^{-\lambda t}
$$

* \mathbf{N} is number of atoms remaining at time \mathbf{t}

$$
\mathbf{N}=\mathbf{N}_{\mathbf{0}} \mathbf{e}^{-\lambda t}
$$

Radioactivity as Statistical Phenomenon: Binomial Distribution

- Radioactive decay a random process
- Number of atoms in a given sample that will decay in a given Δt can differ
\rightarrow Neglecting same Δ t over large time differences, where the time difference is on the order of a half life
\rightarrow Relatively small Δt in close time proximity
- Binomial Distribution for Radioactive Disintegrations
- Reasonable model to describe decay process
\rightarrow Bin counts, measure number of occurrences counts fall in bin number
\rightarrow Can be used as a basis to model radioactive case
\rightarrow Classic description of binomial distribution by coin flip

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x}
$$

- n: number of trials
- p: probability of event in bin

Radioactivity as Statistical Phenomenon: Error from Counting

- For radioactive disintegration
- Probability of atom not decaying in time \mathbf{t}, 1 p , is $\left(\mathrm{N} / \mathrm{N}_{\mathrm{o}}\right)=\mathrm{e}^{-\lambda \mathrm{t}}$
$\rightarrow \mathrm{p}=1-\mathrm{e}^{-\lambda \mathrm{t}}$

$$
P(x)=\frac{N_{o}!}{\left(N_{o}-x\right)!x!}\left(1-e^{-\lambda t}\right)^{x}\left(e^{-\lambda t}\right)^{N_{o}-x}
$$

$\rightarrow \mathrm{N}$ is number of atoms that survive in time interval t and N_{0} is initial number of atoms

- Time Intervals between Disintegrations
- Distribution of time intervals between disintegrations
$\rightarrow \mathrm{t}$ and $\mathrm{t}+\mathrm{d}$ * Write as $\mathrm{P}(\mathrm{t}) \mathrm{dt} \quad \boldsymbol{P}(\boldsymbol{t}) \boldsymbol{d} \boldsymbol{t}=\boldsymbol{N}_{o} \boldsymbol{\lambda} \boldsymbol{e}^{-N_{o} t} \boldsymbol{d t}$

Decay Statistics

- Average disintegration rate
- Average value for a set of numbers that obey binomial distribution
- Use n rather than N_{0}, replace x (probability) with r (disintegrations)

$$
P(x)=\frac{n!}{(n-x)!x!} p^{x}(1-p)^{n-x} \longrightarrow p(r)=\frac{n!}{(n-r)!r!} p^{r}(1-p)^{n-r}
$$

- Average value for r

$$
\bar{r}=\sum_{r=0}^{r=n} r p(r)=\sum_{r=0}^{r=n} r \frac{n!}{(n-r)!r!} p^{r}(1-p)^{n-r}
$$

- Solve using binomial expansion

$$
(p x+(1-p))^{n}=\sum_{r=0}^{r=n} \frac{n!}{(n-r)!!!} p^{r} x^{r}(1-p)^{n-r}=\sum_{r=0}^{r=n} x^{r} p(r)
$$

- Then differentiate with respect to x

$$
n p(p x+(1-p))^{n-1}=\sum_{r=0}^{r=n} r x^{r-1} p(r)
$$

Decay Statistics

- Let $\mathbf{x}=1$
$n p(p x+(1-p))^{n-1}=\sum_{r=0}^{r=n} r x^{r-1} p(r) \rightleftarrows n p=\sum_{r=0}^{r=n} r p(r)=\bar{r}$
- Related to number and probability
- For radioactive decay \mathbf{n} is \mathbf{N}_{0} and p is ($1-\mathrm{e}^{-\lambda t}$)
- Use average number of atoms disintegrating in time t
- $\quad M=$ average number of atoms disintegrating in time t
\rightarrow Can be measured as counts on detector
- $\quad \mathbf{M}=\mathrm{N}_{\mathbf{0}}\left(1-\mathrm{e}^{-\lambda t}\right)$
- For small $\lambda t, M=N_{0} \lambda t$
- Disintegration rate is M per unit time
$\rightarrow \mathrm{R}=\mathrm{M} / \mathrm{t}=\mathrm{N}_{\mathbf{0}} \lambda$
\rightarrow Small λ t means count time is short compared to half life
\rightarrow Corresponds to -dN/dt= $\lambda \mathbf{N}=A$

Decay Statistics

- Expected Standard Deviation
- Base on expected standard deviation from binomial distribution
- Use binomial expansion $n p(p x+(1-p))^{n-1}=\sum_{r=0}^{r=n} r r^{r-1} p(r)$
- and differentiate with respect to x

$$
n(n-1) p^{2}(p x+(1-p))^{n-2}=\sum_{r=0}^{r=n} r(r-1) x^{r-2} p(r)
$$

- $x=1$ and $p+(p-1)=1$

From bottom of slide 3-6

$$
\begin{aligned}
& n(n-1) p^{2}=\sum_{r=0}^{r=n} r(r-1) p(r)=\sum_{r=0}^{r=n} r^{2} p(r)-\sum_{r=0}^{r=n} r p(r) \\
& n(n-1) p^{2}=\overline{r^{2}}-\bar{r}
\end{aligned}
$$

- Variation defined as $\sigma_{r}^{2}=\overline{r^{2}}-\bar{r}^{2}$
- Combine

$$
\sigma_{r}^{2}=n(n-1) p^{2}+\bar{r}-\bar{r}^{2}
$$

Expected Standard Deviation

- Solve with: $\bar{r}=n p$

$$
\begin{aligned}
& \sigma_{r}^{2}=n^{2} p^{2}-n p^{2}+n p-n^{2} p^{2}=n p(1-p) \\
& \sigma_{r}=\sqrt{n p(1-p)} .
\end{aligned}
$$

- Apply to radioactive decay
- M is the number of atoms decaying
\rightarrow Number of counts for a detector

$$
\sigma=\sqrt{N_{o}\left(1-e^{-\lambda t}\right) e^{-\lambda t}}=\sqrt{M e^{-\lambda t}}
$$

Since in counting practice λt is small, $e^{-\lambda t} \approx 1$

$$
\sigma=\sqrt{M}
$$

- Relative error $=\sigma^{-1}$
- What is a reasonable number of counts
- More counts, lower error

Counts	error	\% error
10	3.16	31.62
100	10.00	10.00
1000	31.6	3.16
10000	100.82	1.00

Measured Activity

- Activity (A) determined from measured counts by correcting for geometry and efficiency of detector
- Not every decay is observed
- Convert counts to decay
- $A=\lambda N$
- $\mathbf{A}=\mathbf{A}_{\mathbf{0}} \mathbf{e}^{-\lambda t}$
- Units
- Curie
- 3.7E10 decay/s

$$
\begin{array}{r}
\rightarrow \mathbf{1} \mathbf{g} \mathbf{g}^{226} \mathrm{Ra} \\
* \mathbf{A}=\lambda \mathbf{N}
\end{array}
$$

- Becquerel
- 1 decay/s

Half Life and Decay Constant

- Half-life is time needed to decrease nuclides by 50\%
- Relationship between
 $\mathrm{t}_{1 / 2}$ and λ
- $N / N_{0}=1 / 2=e^{-\lambda t}$
- $\ln (1 / 2)=-\lambda t_{1 / 2}$
- $\ln 2=\lambda t_{1 / 2}$
- $\mathbf{t}_{1 / 2}=(\ln 2) / \lambda$
- Large variation in half-lives for different isotopes
- Short half-lives can be measured \rightarrow Evaluate activity over time
* Observation on order of half-life
- Long half-lives
\rightarrow Based on decay rate and sample
* Need to know total amount of nuclide in sample
* $\mathbf{A}=\lambda \mathbf{N}$

Exponential Decay

- Average Life (τ) for a radionuclide
- found from sum of times of existence of all atoms divided by initial number of nuclei
- $1 / \lambda=1 /\left(\ln 2 / t_{1 / 2}\right)=1.443 t_{1 / 2}=\tau$

$$
\tau=-\frac{1}{N_{o}} \int_{t=0}^{t=\infty} t \cdot d N=\frac{1}{\lambda}
$$

\rightarrow Average life greater than half

- Total number of nuclei that decay over time
- Dose
- Atom at a time

Gamma decay and Mossbauer

- Couple with Heisenberg uncertainty principle
$\square \Delta \mathrm{E} \Delta \mathrm{t} \geq \mathrm{h} / 2 \pi$
- Δt is τ, with energy in eV
$\square \Delta \mathrm{E} \geq(4.133 \mathrm{E}-15 \mathrm{eV} \mathrm{s} / 2 \pi) / \tau=\Gamma$
$\square \Gamma$ is decay width
- Resonance energy
- $\quad \Gamma(\mathrm{eV})=4.56 \mathrm{E}-16 / \mathrm{t}_{1 / 2}$ seconds

$$
\rightarrow \mathrm{t}_{1 / 2}=1 \mathrm{sec}, \tau=1.44 \mathrm{~s}
$$

E_{γ}

- Need very short half-lives for large widths
- Useful in Moessbauer spectroscopy
- Absorption distribution is centered around $\mathrm{E}_{\gamma}+\Delta \mathrm{E}$
- emission centered $\mathrm{E}_{\gamma}-\Delta \mathrm{E}$.
- overlapping part of the peaks can be changed by changing temperature of source and/or absorber
- Doppler effect and decay width result in energy distribution near E_{r}
- Doppler from vibration of source or sample

Important Equations!

- $\mathbf{N}_{\mathrm{t}}=\mathrm{N}_{\mathbf{0}} \mathbf{e}^{-\lambda \mathrm{t}}$
- $\mathrm{N}=$ number of nuclei, $\lambda=$ decay constant, $t=$ time
\rightarrow Also works for A (activity) or C (counts)

$$
* \mathbf{A}_{\mathbf{t}}=\mathbf{A}_{\mathbf{0}} \mathbf{e}^{-\lambda t}, \mathbf{C}_{\mathbf{t}}=\mathbf{C}_{\mathbf{0}} \mathbf{e}^{-\lambda t}
$$

- $A=\lambda N$
- $1 / \lambda=1 /\left(\ln 2 / t_{1 / 2}\right)=1.443 t_{1 / 2}=\tau$
- Error
- \mathbf{M} is number of counts $\sigma=\sqrt{M}$

Half-life calculation

Using $N_{t}=N_{0} \mathbf{e}^{-\lambda t}$

- For an isotope the initial count rate was 890 Bq. After 180 minutes the count rate was found to be 750 Bq
- What is the half-life of the isotope
$\rightarrow 750=890 \exp (-\lambda * 180 \mathrm{~min})$
$\rightarrow 750 / 890=\exp (-\lambda * 180 \mathrm{~min})$
$\rightarrow \ln (750 / 890)=-\lambda * 180 \mathrm{~mm}$
$\rightarrow-0.171 / 180 \mathrm{~min}=-\lambda$
$\rightarrow 9.5 \mathrm{E}-4 \mathrm{~min}^{-1}=\lambda=\ln 2 / \mathrm{t}_{1 / 2}$
$\rightarrow \mathrm{t}_{1 / 2}=\ln 2 / 9.5 \mathrm{E}-4=729.6 \mathrm{~min}$

Half-life calculation

$A=\lambda N$

- A 0.150 g sample of ${ }^{248} \mathrm{Cm}$ has a alpha activity of 0.636 mCi .
- What is the half-life of ${ }^{248} \mathrm{Cm}$?
\rightarrow Find A
* 0.636 E-3 Ci (3.7E10 Bq/Ci)=2.35E7 Bq
\rightarrow Find N
* 0.150 g x 1 mole/248 g x 6.02E23/mole= 3.64E20 atoms
$\rightarrow \lambda=\mathrm{A} / \mathrm{N}=2.35 \mathrm{E} 7 \mathrm{~Bq} / 3.64 \mathrm{E} 20$ atoms $=6.46 \mathrm{E}-14 \mathrm{~s}^{-1}$
* $t_{1 / 2}=\ln 2 / \lambda=0.693 / 6.46 \mathrm{E}-14 \mathrm{~s}^{-1}=1.07 \mathrm{E} 13 \mathrm{~s}$
* $1.07 \mathrm{E} 13 \mathrm{~s}=1.79 \mathrm{E} 11 \mathrm{~min}=2.99 \mathrm{E} 9 \mathrm{~h}=1.24 \mathrm{E} 8 \mathrm{~d}$ $=3.4 \mathrm{E} 5 \mathrm{a}$

Counting

$A=\lambda N$

- Your gamma detector efficiency at 59 keV is 15.5%. What is the expected gamma counts from 75 micromole of ${ }^{241} \mathrm{Am}$?
- Gamma branch is 35.9 \% for ${ }^{241} \mathrm{Am}$
- $\mathrm{C}=(0.155)(0.359) \lambda \mathrm{N}$
- $\mathrm{t}_{1 / 2}=432.7$ a* (3.16E7
$\mathrm{s} / \mathrm{a})=1.37 \mathrm{E} 10 \mathrm{~s}$
- $\lambda=\ln 2 / 1.37 \mathrm{E} 10 \mathrm{~s}=5.08 \mathrm{E}-11 \mathrm{~s}^{-1}$
- N=75E-6 moles
*6.02E23/mole=4.52E19 atoms
- $\mathrm{C}=(0.155)(0.359) 5.08 \mathrm{E}-11 \mathrm{~s}^{-}$
$1 * 4.52 \mathrm{E} 19=1.28 \mathrm{E} 8$ counts/second

Decay Scheme

Specific activity

- Activity of a given amount of radionuclide
- Use $\mathbf{A}=\lambda \mathbf{N}$
\rightarrow Use of carrier should be included
- SA of ${ }^{226}$ Ra
- $1 \mathrm{~g}{ }^{226} \mathrm{Ra}, \mathrm{t}_{1 / 2}=1599 \mathrm{a}$
- 1 g * $1 \mathrm{~mole} / 226 \mathrm{~g}$ * 6.02E23 atoms $/ \mathrm{mole}=$ 2.66 E 21 atom $=\mathrm{N}$
- $\mathbf{t}_{1 / 2}=1599 \mathrm{a} * 3.16 \mathrm{E} 7 \mathrm{~s} / \mathrm{a}=5.05 \mathrm{E} 10 \mathrm{~s}$ $\rightarrow \lambda=\ln 2 / 5.05 \mathrm{E} 10 \mathrm{~s}=1.37 \mathrm{E}-11 \mathrm{~s}^{-1}$
- $\mathrm{A}=1.37 \mathrm{E}-11 \mathrm{~s}^{-1}$ * 2.66E21=3.7E10 Bq
- Definition of a Curie!

Specific Activity

- $1 \mathrm{~g}{ }^{244} \mathrm{Cm}, \mathrm{t}_{1 / 2}=18.1 \mathrm{a}$
- 1 g * $1 \mathrm{~mole} / 244 \mathrm{~g}$ * 6.02E23 atoms/mole $=2.47 \mathrm{E} 21$ atom $=\mathrm{N}$
- $\quad \mathrm{t}_{1 / 2}=18.1 \mathrm{a} * 3.16 \mathrm{E} 7 \mathrm{~s} / \mathrm{a}=5.72 \mathrm{E} 8 \mathrm{~s}$ $\rightarrow \lambda=\ln 2 / 5.72 \mathrm{E} 8 \mathrm{~s}=1.21 \mathrm{E}-9 \mathrm{~s}^{-1}$
- $A=1.21 E-9 \mathrm{~s}^{-1}$ * $2.47 \mathrm{E} 21=2.99 \mathrm{E} 12 \mathrm{~Bq}$
- Generalized equation for $1 \mathbf{g}$
- 6.02E23/Isotope mass *2.19E-8/ $t_{1 / 2}$ (a)
- $1.32 \mathrm{E} 16 /\left(\right.$ Isotope mass* $\mathrm{t}_{1 / 2}$ (a))

Specific Activity

- Activity/mole
- N=6.02E23
- $\mathrm{SA}(\mathrm{Bq} / \mathrm{mole})$ of ${ }^{129} \mathrm{I}, \mathrm{t}_{1 / 2}=1.57 \mathrm{E} 7$ a
- $\mathrm{t}_{1 / 2}=1.57 \mathrm{E} 7 \mathrm{a} * 3.16 \mathrm{E} 7 \mathrm{~s} / \mathrm{a}=$ 4.96 E 14 s
$\rightarrow \lambda=\ln 2 / 4.96 \mathrm{E} 14 \mathrm{~s}$
$=1.397 \mathrm{E}-15 \mathrm{~s}^{-1}$
- $A=1.397 \mathrm{E}-15 \mathrm{~s}^{-1}$
*6.02E23=8.41E8 Bq
- Generalized equation

- $\mathrm{SA}(\mathrm{Bq} / \mathrm{mole})=1.32 \mathrm{E} 16 / \mathrm{t}_{1 / 2}$
(a)

Specific activity with carrier

- 1E6 Bq of ${ }^{152} \mathrm{Eu}$ is added to 1 mmole Eu.
- Specific activity of Eu (Bq/g)
- Need to find g Eu
$\rightarrow 1 \mathrm{E}-3$ mole $* 151.96 \mathrm{~g} / \mathrm{mole}=1.52 \mathrm{E}-1 \mathrm{~g}$
$\rightarrow=1 \mathrm{E} 6 \mathrm{~Bq} / 1.52 \mathrm{E}-1 \mathrm{~g}=6.58 \mathrm{E} 6 \mathrm{~Bq} / \mathrm{g}$
* $=1 \mathrm{E} 9 \mathrm{~Bq} / \mathrm{mole}$
- What is SA after 5 years
- $\mathrm{t}_{1 / 2}=13.54 \mathrm{a}$

$$
\rightarrow=6.58 \mathrm{E} 6 * \exp ((-\ln 2 / 13.54) * 5)=
$$

* $5.09 \mathrm{E} 6 \mathrm{~Bq} / \mathrm{g}$

Lifetime

- Atom at a time chemistry
- ${ }^{261}$ Rf lifetime
- Find the lifetime for an atom of ${ }^{261}$ Rf

$$
\begin{aligned}
& \rightarrow \mathrm{t}_{1 / 2}=65 \mathrm{~s} \\
& \rightarrow \tau=1.443 \mathrm{t}_{1 / 2} \\
& \rightarrow \tau=93 \mathrm{~s}
\end{aligned}
$$

- Determines time for experiment
- Method for determining half-life

Mixtures of radionuclides

- Composite decay
- Sum of all decay particles \rightarrow Not distinguished by energy
- Mixtures of Independently Decaying Activities
- if two radioactive species mixed together, observed total activity is sum of two separate activities:

$$
A_{t}=A_{1}+A_{2}=\lambda_{1} N_{1}+\lambda_{2} N_{2}
$$

- any complex decay
curve may be analyzed
into its components
\rightarrow Graphic analysis of data is possible

Parent - daughter decay

- Isotope can decay into radioactive isotope
- Uranium and thorium decay series
\rightarrow Alpha and beta
* A change from alpha decay
- Different designation
- $4 n\left({ }^{232} \mathbf{T h}\right)$
- $4 \mathrm{n}+2\left({ }^{238} \mathrm{U}\right)$
- $\mathbf{4 n + 3}\left({ }^{235} \mathrm{U}\right)$
- For a decay parent -> daughter
- Rate of daughter
formation dependent upon
parent decay rate-
daughter decay rate

Parent - daughter

- How does daughter isotope change with parent decay
- isotope 1 (parent) decays into isotope 2 (daughter)

$$
\frac{d N_{2}}{d t}=\lambda_{1} N_{1}-\lambda_{2} N_{2}
$$

- Rearranging gives $d N_{2}+\lambda_{2} N_{2} d t=\lambda_{1} N_{1} d t$
- Solve and substitute for \mathbf{N}_{1} using $\mathbf{N}_{\mathbf{1 t}}=\mathbf{N}_{10}{ }^{\mathbf{e}-\lambda \mathrm{t}}$

$$
d N_{2}+\lambda_{2} N_{2} d t=\lambda_{1} N_{1 o} e^{-\lambda_{1} t} d t
$$

- Linear $1^{\text {st }}$ order differential equation
\rightarrow Solve by integrating factors
- Multiply by $\mathrm{e}^{\lambda 2 \mathrm{t}}$

$$
\begin{aligned}
& e^{\lambda_{2} t} d N_{2}+\lambda_{2} N_{2} e^{\lambda_{2} t} d t=\lambda_{1} N_{10} e^{\left(\lambda_{2}-\lambda_{1}\right) t} d t \\
& d\left(N_{2} e^{\lambda_{2} t}\right)=\lambda_{1} N_{10} e^{\left(\lambda_{2}-\lambda_{1}\right) t} d t
\end{aligned}
$$

Parent-daughter

- Integrate over t

$$
\begin{aligned}
& \int_{0}^{t} N_{2} e^{\lambda_{2} t}=\int_{0}^{t} \frac{\lambda_{1} N_{10} e^{\left(\lambda_{2}-\lambda_{1}\right) t}}{\lambda_{2}-\lambda_{1}} \\
& N_{2} e^{\lambda_{2} t}-N_{20}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} N_{10}\left(e^{\left(\lambda_{2}-\lambda_{1}\right) t}-1\right)
\end{aligned}
$$

- Multiply by $\mathrm{e}^{-\lambda}{ }_{2}{ }^{\mathrm{t}}$ and solve for \mathbf{N}_{2}

Parent daughter relationship

- Find N, can solve equation for activity from $A=\lambda N$

$$
A_{2}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}} N_{1 o}\left(e^{-\lambda_{1} t}-e^{-\lambda_{2} t}\right)+A_{2 o} e^{-\lambda_{2} t}
$$

- Find maximum daughter activity based on $\mathbf{d N} / \mathbf{d t}=0$
- Solve for

$$
t=\frac{\ln \left(\frac{\lambda_{2}}{\lambda_{1}}\right)}{\left(\lambda_{2}-\lambda_{1}\right)}
$$

$$
\lambda_{1} e^{-\lambda_{1} t}=\lambda_{2} e^{-\lambda_{2} t}
$$

- For ${ }^{99 m} \mathrm{Tc}\left(\mathrm{t}_{1 / 2}=6.01 \mathrm{~h}\right)$ from ${ }^{99} \mathbf{M o}(2.75 \mathrm{~d})$, find time for maximum daughter activity

$$
\begin{aligned}
& \text { - } \lambda_{\mathrm{Tc}}=2.8 \mathrm{~d} \mathrm{~d}^{-1}, \lambda_{\mathrm{Ma}_{0}}=0.25 \mathrm{~d}^{-1} \\
& t=\frac{\ln \left(\frac{2.8}{0.25}\right)}{(2.8-0.25)}=\frac{\ln (11.2)}{2.55}=0.95 \text { days }
\end{aligned}
$$

Half life relationships

- Can simplify relative activities based on half life relationships
- No daughter decay

$$
N_{2}=N_{1 o}\left(1-e^{-\lambda_{1} t}\right)
$$

- Number of daughter atoms due to parent decay Daughter Radioactive
- No Equilibrium
- If parent is shorter-lived than daughter $\left(\lambda_{1}>\lambda_{2}\right)$
\rightarrow no equilibrium attained at any time
- Daughter reaches maximum activity when
$\lambda_{1} N_{1}=\lambda_{2} \mathbf{N}_{2}$
\rightarrow All parents decay, then decay is based on daughter

Half life relationships

- Transient equilibrium
- Parent half life greater than $10 \mathbf{x}$ daughter half life

$$
\rightarrow\left(\lambda_{1}<\lambda_{2}\right)
$$

- Parent daughter ratio becomes constant over time
- As t goes toward infinity

Fig. 5-2 Transient equilibrium: (a) total activity of an initially pure parent fraction; (b) activity due to parent $\left(t_{1 / 2}=8.0 \mathrm{~h}\right)$; (c) decay of freshly isolated daughter fraction $\left(t_{1 / 2}=0.80 \mathrm{~h}\right)$; (d) daughter activity growing in freshly purified parent fraction; (e) total daughter activity in parent-plus-daughter fractions.

$$
e^{-\lambda_{2} t} \ll e^{-\lambda_{1} t} ; N_{2 o} e^{-\lambda_{2} t}
$$

$$
N_{2} \approx \frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} N_{10} e^{-\alpha_{1} t} \quad \mathbf{N}_{1}=\mathbf{N}_{10} \mathbf{e}^{-\lambda_{1} \mathbf{t}}
$$

Half life relationship

- Secular equilibrium
- Parent much longer half-life than daughter
\rightarrow 1E4 times greater
($\lambda_{1} \ll \lambda_{2}$)
- Parent activity does not measurably
decrease in many
Fig. 5-3 Secular equilibrium: (a) total activity of an initially pure parent fraction; (b) activity due to parent $\left(t_{1 / 2}=\infty\right)$; this is also the total daughter activity in parent-plus-daughter fractions; (c) decay of freshly isolated daughter fraction $\left(\mathrm{t}_{1 / 2}=0.80 \mathrm{~h}\right) ;(d)$ daughter activity growing in freshly purified parent fraction. daughter half-lives

$$
\frac{N_{2}}{N_{1}}=\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} \Longrightarrow \frac{N_{2}}{N_{1}}=\frac{\lambda_{1}}{\lambda_{2}} \Longleftrightarrow \begin{aligned}
& N_{2} \lambda_{2}=N_{1} \lambda_{1} \\
& A_{2}=A_{1}
\end{aligned}
$$

Many Decays

$$
\frac{\mathbf{d} \mathbf{N}_{3}}{\mathbf{d t}}=\lambda_{2} \mathbf{N}_{2}-\lambda_{3} \mathbf{N}_{3}
$$

- Can use the Bateman solution to calculate entire chain
- Bateman assumes only parent present at time 0

$$
\begin{aligned}
& \mathbf{N}_{\mathbf{n}}=\mathbf{C}_{1} \mathrm{e}^{-\lambda_{1} \mathrm{t}}+\mathbf{C l}_{2} \mathrm{e}^{-\lambda_{2} \mathrm{t}}+\mathbf{C}_{\mathrm{n}} \mathrm{e}^{-\lambda_{\mathrm{n}} \mathrm{t}} \\
& \mathbf{C}_{1}=\frac{\lambda_{1} \lambda_{2} \ldots \ldots \lambda_{(n-1)}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \ldots\left(\lambda_{\mathrm{n}}-\lambda_{1}\right)} \mathbf{N}_{10} \\
& \mathbf{C}_{2}=\frac{\lambda_{1} \lambda_{2} \ldots . \lambda_{(n-1)}}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{2}\right) \ldots\left(\lambda_{\mathrm{n}}-\lambda_{2}\right)} \mathbf{N}_{10}
\end{aligned}
$$

Program for Bateman http://www.ergoffice.com/downloads.aspx

Review of ERG Program

Environmental radionuclides and

dating

- Primordial nuclides that have survived since time elements were formed
- $t_{1 / 2}>1 E 9$ a
- Decay products of these long lived nuclides

$$
\rightarrow{ }^{40} \mathrm{~K},{ }^{87} \mathrm{Rb},{ }^{238} \mathrm{U},{ }^{235} \mathrm{U},{ }^{232} \mathrm{Th}
$$

- shorter lived nuclides formed continuously by interaction of comic rays with matter
- ${ }^{3} \mathrm{H},{ }^{14} \mathrm{C},{ }^{7} \mathrm{Be}$

$$
\rightarrow{ }^{14} \mathrm{~N}\left(\mathrm{n},{ }^{1} \mathrm{H}\right){ }^{14} \mathrm{C}(\text { slow } \mathrm{n})
$$

$$
\left.\rightarrow{ }^{14} \mathrm{~N}\left(\mathrm{n},{ }^{3} \mathbf{H}\right)^{12} \mathrm{C} \text { (fast } \mathrm{n}\right)
$$

- anthropogenic nuclides introduced into the environment by activities of man
- Actinides and fission products
- ${ }^{14} \mathrm{C}$ and ${ }^{3} \mathrm{H}$

Dating

- Radioactive decay as clock
- Based on $\mathbf{N}_{\mathrm{t}}=\mathbf{N}_{\mathbf{0}} \mathrm{e}^{-\lambda t}$ \rightarrow Solve for t

$$
t=\frac{\ln \frac{N_{t}}{N_{o}}}{-\lambda}=\frac{\ln \frac{N_{o}}{N_{t}}}{\lambda}
$$

- \mathbf{N}_{0} and \mathbf{N}_{t} are the number of radionuclides present at times $t=0$ and $t=t$
- $\quad N_{t}$ from $A=\lambda N$
- t the age of the object
- Need to determine \mathbf{N}_{0}
\rightarrow For decay of parent P to daughter D total number of nuclei is constant

$$
D(t)+P(t)=P_{o}
$$

Dating

- $\mathbf{P}_{\mathrm{t}}=\mathrm{P}_{\mathbf{0}} \mathrm{e}^{-\lambda \mathrm{t}}$
- Measuring ratio of daughter to parent atoms
- No daughter atoms present at $\mathbf{t = 0}$
- All daughter due to parent decay
- No daughter lost during time t
- A mineral has a ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}=0.4$. What is the age of the mineral?

$$
t=\frac{1}{\frac{\ln 2}{4.5 E 9 a}} \ln (1+0.4)
$$

$\rightarrow 2.2 \mathrm{E} 9$ years

Dating

- ${ }^{14} \mathrm{C}$ dating

- Based on constant formation of ${ }^{14} \mathrm{C}$
\rightarrow No longer uptalkes C upon organism death
- $227 \mathrm{~Bq}{ }^{14} \mathrm{C} / \mathrm{kgC}$ at equilibrium
- What is the age of a wooden sample with 0.15 Bq/g C?

$$
t=\frac{1}{\left(\frac{\ln 2}{5730 y e a r s}\right)} \ln \left(\frac{0.227}{0.15}\right)=3420 \text { years }
$$

Dating

- Determine when Oklo reactor operated
- Today $0.7 \%{ }^{235} \mathrm{U}$
- Reactor $\$.5 \%{ }^{235} \mathrm{U}$
- Compare ${ }^{235} \mathrm{U} /{ }^{238} \mathrm{U}\left(\mathrm{U}_{\mathrm{r}}\right)$ ratios and use $\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\lambda \mathrm{t}}$
$U_{r}(t)=U_{r}(0) \frac{e^{-\lambda_{235} t}}{e^{-\lambda_{238} t}}=U_{r}(0) e^{\left(-\lambda_{235} t+\lambda_{238} t\right)}$
$\ln \frac{\mathrm{U}_{\mathrm{r}}(\mathrm{t})}{\mathrm{U}_{\mathrm{r}}(\mathrm{o})}=t\left(-\lambda_{235}+\lambda_{238}\right)$
$t=\frac{\mathrm{U}_{\mathrm{r}}^{\downarrow}(\mathrm{o})}{\left(-\lambda_{235}+\lambda_{238}\right)} t=\frac{3.63 \mathrm{E}-2}{(-9.85 \mathrm{E}-10+1.55 E-10)}=1.97$ E9 years

Topic review

- Utilize and understand the basic decay equations
- Relate half life to lifetime
- Understand relationship between count time and error
- Utilization of equations for mixtures, equilibrium and branching
Use cross sections for calculation nuclear reactions and isotope production
- Utilize the dating equation for isotope pair

Study Questions

- Compare and contrast nuclear decay kinetics and chemical kinetics.
- If M is the total number of counts, what is the standard deviation and relative error from the counts?
- Define Curie and Becquerel
- How can half-life be evaluated?
- What is the relationship between the decay constant, the half-life, and the average lifetime?
- For an isotope the initial count rate was 890 Bq . After 180 minutes the count rate was found to be 750 Bq . What is the half-life of the isotope?
- A 0.150 g sample of ${ }^{248} \mathrm{Cm}$ has a alpha activity of 0.636 mCi . What is the half-life of ${ }^{248} \mathrm{Cm}$?
- What is the half life for each decay mode for the isotope ${ }^{212}$ Bi?
- How are cross sections used to determine isotope production rate?
- Determine the amount of ${ }^{60} \mathrm{Co}$ produced from the exposure of 1 g of Co metal to a neutron flux of $10^{14} \mathbf{n} / \mathrm{cm}^{2} / \mathrm{sec}$ for 300 seconds.
- What are the basic assumptions in using radionuclides for dating?

Pop Quiz

- You have a source that is 0.3 Bq and the source is detected with 50 \% efficiency. It is counted for 10 minutes. Which total counts shown below are not expected from these conditions?
- 95, 81, 73, 104, 90, 97, 87
- Submit by e-mail or bring to class on 24 September
- Comment on Blog

Useful projects

- Make excel sheets to calculate
- Mass or mole to activity
\rightarrow Calculate specific activity
- Concentration and volume to activity
\rightarrow Determine activity for counting
- Isotope production from irradiation
- Parent to progeny
\rightarrow Daughter and granddaughter *i.e., ${ }^{239} \mathrm{U}$ to ${ }^{239} \mathrm{~Np}$ to ${ }^{239} \mathrm{Pu}$

